Shadow-Box: Lightweight and Practical Kernel Protector for x86
Shadow-box is a security monitoring framework for operating systems using state-of-the-art virtualization technologies. Shadow-box has a novel architecture inspired by a shadow play. We made Shadow-box from scratch, and it is primarily composed of a lightweight hypervisor and a security monitor.
The lightweight hypervisor, Light-box, efficiently isolates an OS inside a guest machine and projects static and dynamic kernel objects of the guest into the host machine so that our security monitor in the host can investigate the projected images. The security monitor, Shadow-Watcher, places event monitors on static kernel elements and tests security of dynamic kernel elements.
Shadow-box manipulates address translations from the guest physical address to the host physical address in order to exclude unauthorized accesses to the host and the hypervisor spaces. In that way, Shadow-box can properly introspect the guest operating system and mediate all accesses, even when the operating system is compromised.
Architecture of Shadow-Box
It is designed to support a lightweight and practical security monitoring framework using virtualization technologies.
Shadow-box that keeps an OS safe by filtering out unauthorized accesses to important kernel elements and defending the integrity of kernel elements periodically. Shadow-box relies upon its two subparts: a lightweight hypervisor and a security monitor. The lightweight hypervisor, Light-box, efficiently isolates an OS inside a guest machine and projects static and dynamic kernel objects of the guest into the host machine, so that our security monitor in the host can investigate the projected images. The security monitor, Shadow-watcher, places event monitors on static kernel elements and tests security of dynamic kernel elements. Running inside the host, it can test the security of the guest without malicious interference even when the guest OS is compromised.
If you want to know more about Shadow-box, please see the presentation and paper at Black Hat Asia 2017 and HITBSecConf 2017.
Copyright (C) 2017 Seunghun Han at National Security Research Institute of South Korea